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Abstract. The cyclic evolution of a spin-1 system is studied under the spin-spin interaction between the
transverse and the longitudinal states. The eigenstates of the systems are obtained by generalized and
extended Jordan-Wigner transformation with an angle φ described the path of particle propagation. Ac-
cording to the wave functions of time evaluation for many-particle systems, the entanglement effects and
geometric phase are observed. The systems with more than two particles, in contrast to the two particle
system, evolve in time with two parameters.

PACS. 03.65.Bz Foundations, theory of measurement, miscellaneous theories (including Aharonov-Bohm
effect, Bell inequalities, Berry’s phase) – 03.65.Ud Entanglement and quantum nonlocality (e.g. EPR
paradox, Bell’s inequalities, GHZ states, etc.) – 03.67.Lx Quantum computation – 07.60.Ly Interferometers

1 Introduction

Entanglement is a quintessential property of quantum me-
chanics that sets it apart from any classical physical the-
ory. An important feature of entanglement is that it gives
rise to correlations that cannot be explained by any lo-
cal realistic description of quantum mechanics. The idea
of non-local correlation among remote particles was origi-
nally broached in a classic paper on the incompleteness of
quantum mechanics by Einstein, Podolsky and Rosen [1].
In this paper, Einstein and his co-workers proposed a
Gedenken experiment involving two entangled particles
which showed that quantum mechanics cannot in all situ-
ations be a complete description of physical reality. This
idea was subsequently conceptualized in a seminal paper
by Schrödinger [2] and revisited in a subsequent work by
Bell [3]. Incidentally, these particles (EPR pairs) have now
found wide applications in the area of quantum informa-
tion theory.

An entangled state is state of a composite system that
cannot be separated into product states in terms of the
subsystems. For a bipartite pure state, the degree of en-
tanglement can be found from the Schmidt numbers. For
a mixed state, there is the Peres-Horodecki theorem con-
cerning partial transposition which can be used to deter-
mine if a state is entangled or separable provided the di-
mension is low, specifically 2× 2 or 2× 3 systems. Indeed,
in recent years, quantum entanglement has become such
an important physical resource for quantum communica-
tion and information processing that it has found wide
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applications in processes like quantum teleportation [4,5],
superdense coding [6], quantum key distribution [7] and
telecoloning [8].

Besides quantum entanglement, quantum mechanics
harbors another surprisingly elegant idea. This idea was
hatched from fact that a quantum state acquires a purely
geometrical phase under adiabatic evolution. This phase
depends geometrically on the area covered by the evolu-
tion of the system but it does not depend on how the
motion is performed. Indeed, from a historical perspec-
tive, the concept of geometric phase was originally intro-
duced by Pancharatnam [9] in the context of interference
between light waves in distinct states of polarization. It
was subsequently rediscovered by Berry [10] for quantal
systems undergoing cyclic adiabatic evolution. This Berry
phase has since then been linked to the notion of parallel
transport [11] and formulated elegantly as well as rigor-
ously using the language of differential geometry.

Quantum entanglement and geometric phase have
been extensively explored for physical systems with
two states or two levels (qubits) [12,13]. Some common
examples of two-state system are atoms [14,15] with spin
Sz = ± 1

2 or photons [16] where one represents the sys-
tem in terms of the two polarized states. Experimentally,
quantum interference with a photon beam can be gener-
ated from a parametric down-converter and employed in
a large number of experiments [17–19] to verify and probe
the intriguing properties of quantum entanglement and
quantum geometric phase.

While it is generally possible to study physical sys-
tems with two states or two levels both theoretically and
experimentally, the extension to higher dimensions (more
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states) is often fraught with experimental challenges and
difficulty. For instance, in an interacting many-particle
system, while one may acknowledge the existence of en-
tanglement, there is still the question of how to charac-
terize the degree of entanglement [20]. Indeed, some of
the most challenging and interesting problems in quan-
tum mechanics concern many-body systems with strong
quantum fluctuations. Moreover, there are many possible
theoretical insights by studying many body problems that
could potentially enhance our understanding of strongly-
coupled systems for applications of quantum information
theory.

Recently, there have also been increasing interests
in the study of entangled state of spin-s objects (s >
1
2 ), which apart from its fundamental interest [21–24],
are clearly of some practical interest in the applica-
tions to quantum information such as quantum cryptog-
raphy [25,26]. Experimental violation of a spin-1 Bell in-
equality has been reported using polarization entangled
four spin-1 photon state [27]. However, the experimental
generation of spin-1 photon states using two correlated
photons (bi-photon) prepared via spontaneous paramet-
ric down-conversion techniques are inherently composed
of massless particles.

Experimental observation of bosonic Mott-Hubbard
transition in Rb atoms in higher spin particles have been
reported in reference [28]. Following this observation,
Yip [29] considered spin-1 bosons trapped in an optical
lattice and argued that the ground state should be a dimer
phase. Other related studies include the investigation of
rotating spin-1 Bose cluster [30], experimental observa-
tion of multiparticle states of quasi-one dimensional spin-1
chain [31] and the solution of spin-1 anti-ferromagnetic
chain doped with mobile spin-1/2 carriers [32]. Since en-
tanglement in optical lattice could be used as a possible
physical resource for quantum computation, it is therefore
interesting to consider entanglement for massive spin-1
particles.

In this paper, we focus on the study of quantum en-
tanglement and the quantum geometric phase for massive
spin-1 particles in many particle system. In Section 2,
we review and describe spin-1 representation for mas-
sive spin-1 particles and the spin-spin interaction between
the transverse and the longitudinal states. In Section 3,
we work out the geometric phase and entanglement for
a two spin-1 particle system and a linked equation be-
tween the geometric phase and entanglement is studied,
while in Section 4, we extend the calculation to 3 and 4
spin-1 particles. In Section 5, we briefly discuss the situa-
tion for N spin-1 particles. In real systems noise and deco-
herence are a big problem. The process limits the ability to
maintain pure quantum states and quantum information.
Therefore, in Section 6, the interaction of the N -particle
system with its environment is briefly discussed.

2 Spin-1 representation

A massive spin-1 particle has three distinct basis states. It
is convenient to use a representation in order to describe

the components of the angular momentum of a spin-1 par-
ticle. Three spin matrices may be expressed as [33],

Sx =




0 0 0
0 0 −i
0 i 0


 , Sy =




0 0 i
0 0 0
−i 0 0


 ,

Sz =




0 −i 0
i 0 0
0 0 0


 , (1)

in natural units (� = 1). These matrices obey the commu-
tation relations of the angular momentum.

Moreover, we know that the transverse and longitudi-
nal polarization vectors are related to the eigenvectors of
the helicity operator S · p/|p| where p is momentum of
the spin-1 particle. A convenient choice is that p points
along the positive z-axis. With the same reference system
we could choose the eigenvectors of the spin-1 particle as

|1〉 =
1√
2




1
i
0


 , |2〉 =

1√
2




1
−i
0


 , |3〉 =




0
0
1


 , (2)

and

Sz|1〉 = |1〉, Sz|2〉 = −|2〉, Sz|3〉 = 0. (3)

The polarized vectors |1〉 (spin up) and |2〉 (spin down)
represent states |T 〉 of transverse polarization, while |3〉
(spin 0) represents longitudinal polarization |L〉. With the
help of the spin matrices in equation (1), we can construct
raising and lowering operators defined by

S+ =
1√
2
(Sx + iSy), S− =

1√
2
(Sx − iSy), (4)

acting on the states of spin-1 particle.
We may now construct a spin-spin interaction between

the transverse and the longitudinal states in an isolated
quantum system consisting of N spin-1 particles using the
Hamiltonian

Ĥ =
λ

2

N∑
n=1

(
SL+

n ST−
n+1 + ST−

n SL+
n+1 + ST+

n SL−
n+1

+SL−
n ST+

n+1 + SLz
n STz

n+1 + STz
n SLz

n+1

)
, (5)

where SL±
n |L〉 = S±

n |L〉, SL±
n |T 〉 = 0, ST±

n |L〉 = 0,
ST±

n |T 〉 = S±
n |T 〉, SLz

n |L〉 = Sz
n|L〉, SLz

n |T 〉 = 0, STz
n |L〉 =

0, and STz
n |T 〉 = Sz

n|T 〉. A similar action to the operators,
SL±

n+1, S
T±
n+1, S

Lz
n+1 and STz

n+1, Moreover, we have imposed a
periodic boundary condition, S±,z

N+1 = S±,z
1 , and where λ

is the strength of the interaction.
The Hamiltonian operator (5) in the case of

two spin− 1
2 particles has been considered in an implemen-

tation of holonomic quantum computation using nuclear
magnetic resonance where λ decreases with the spatial
distance between particles [15]. It is therefore interesting
to consider the degree of entanglement and the geometric
phase for the spin-1 particle particles.
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The eigenvalue problem of equation (5) can be solved
exactly using the Jordan-Wigner transformation [34].
To obtain the time-evolution of a state under the
Hamiltonian, we define a N spin-1 ground state as a linear
superposition of N − 1 spin S3 = 0 states and one spin
S3 = 1 state,

|k〉 =
N∑

n=1

ak,nS
+
n |3〉⊗N , (6)

where k = 1 for ground state; or N − 1 spin S3 = 0 states
and one spin S3 = −1 state,

|l〉 =
N∑

n=1

bl,nS
−
n |3〉⊗N , (7)

where l = 1 for ground state.
Using the properties of the defined raising and lowering

operators and taking expression (6) as the eigenstate of
the Hamiltonian, we have,

Ĥ|k〉 =
N∑

n=1

ak,nĤS+
n |3〉⊗N

=
λ

2

∑
n,m

(
SL+

m δm+1,n + SL+
m+1δm,n

) |3〉⊗N

=
λ

2

N∑
n=1

(ak,n+1 + ak,n−1)S+
n |3〉⊗N

= Ek|k〉 = Ek

N∑
n=1

ak,nS
+
n |3〉⊗N . (8)

From the above equation, the coefficients ak,n are found
to satisfy a recursion relation,

λ

2
(ak,n+1 + ak,n−1) = Ekak,n. (9)

Applying a periodic boundary condition to equation (9),
we have

ak,n = exp
(
i
(2πk + φ)n

N

)
, (10)

Ek = λ cos
(

(2πk + φ)
N

)
. (11)

It should be noted that in equations (10) and (11), we
have included the phase, 0 ≤ φ ≤ 2π, unlike the case of
a previous work [34] on spin-1/2 particles in which the
phase is left out. The eigenvectors are given by

|k〉 =
1√
N

N∑
n=1

exp
(
i
(2πk + φ)n

N

)
S+

n |3〉⊗N , (12)

and satisfy the normalization condition. It is noted
that these eigenstates can be considered as generalized
Greenberger-Horme-Zeilinger (GHZ) states [35,36] with

arbitrary phases θi(i = 1, 2, ..., N) for any N -particle sys-
tem. Indeed any particle pair in the above state after trac-
ing out the rest of the particles is maximally mixed.

An initial state is needed to describe time-evolution of
N spin-1 particle system. In terms of equation (12), we
define the initial state of N spin-1 particles as

|ψN (0)〉 =
1√
N

N∑
k=1

exp
(
−i (2πk + φ)

N

)
|k〉, (13)

and the state vector at time t may be obtained by
Schrödinger equation

|ψN (t)〉 =
N∑

n=1

C(n,N, t)S+
n |3〉⊗N , (14)

where the coefficient is given by

C(n,N, t) =

1
N

N∑
k=1

exp
(
i
(2πk + φ)(n− 1)

N
− iλt cos

(2πk + φ)
N

)
.

(15)

3 Two spin-1 particles system

Although we are interested in the geometric phase and the
degree of entanglement for N particles, it is instructive
to consider the simplest case of two spin-1 particles. For
two spin-1 particles, we find

C(1, 2, t) = cosλ′t, C(2, 2, t) = −iei φ
2 sinλ′t, (16)

where λ′ = λ cos φ
2 is introduced as a result of the renor-

malization for the coupling constant of the spin-spin in-
teraction. 0 < λ′t < π and 0 < φ < 2π correspond to
the polar and azimuthal angles respectively. Moreover, we
have appropriately rescaled the interaction strength. Note
also that |C(1, 2, t)|2 + |C(2, 2, t)|2 = 1.

Inserting equations (16) into (14), we find that the
wavefunction of two spin-1 particle system is given by

|ψ2(λ′, t)〉 = − cosλ′t|13〉 + iei φ
2 sinλ′t|31〉. (17)

When λ′t = 2nπ+ π/4, |ψ2(λ′, t)〉 is maximally entangled
state. At these points, the corresponding phases of the
generalized GHZ state (called as W state) are θ1 = π and
θ2 = (π + φ))/2.

Similarly, one has

|ϕ2(λ′, t)〉 = cosλ′t|23〉 − iei φ
2 sinλ′t|32〉, (18)

we see from equations (17) and (18) that the Hamilto-
nian (5) cannot distinguish the interaction between the
spin up state and the spin down state. When λ′t =
2nπ(n = 1, 2...), |ψ2(λ′, t)〉 and |ϕ2(λ′, t)〉 undergo cyclic
evolutions. Such as |ψ2(0)〉 = |ψ2(τ)〉. The cyclic condition
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Fig. 1. Entropy of the subsystem of a two spin-1 particle sys-
tem as a function of λ′t is shown. The state of the two par-
ticles evolves cyclically from a pure state to a maximally
mixed one. When λ′t = π/4, 3π/4, ..., Entropy has a maxi-
mum value, this corresponds to a maximally entangled state.
When λ′t = 0, π/2, π, ..., the system is in pure state.

τ = 2nπ/λ′ = 2nπ/(λ cos φ
2 ) for the motion is dependent

on the phase φ.
From equations (17) and (18), we find

〈ψ2(λ′, t)| d
dt
|ψ2(λ′, t)〉 = 0,

〈ϕ2(λ′, t)| d
dt
|ϕ2(λ′, t)〉 = 0, (19)

which is the parallel-transport condition of the two spin-1
particle system [11]. This condition has its origin in for-
malism of Schrödinger equation and it has a purely geo-
metric [10,11] origin.

For a bipartite system, we can consider the entropy of
a subsystem as a measure of entanglement. To do this, we
first calculate density matrix of the system

ρAB = |ψ2(λ′, t)〉AB × AB〈ψ2(λ′, t)|, (20)

and take the partial trace so that the mixed state of the
subsystem A is given by

ρA = TrB(ρAB)

=




cos2 λ′t/2 −i cos2 λ′t/2 0
i cos2 λ′t/2 cos2 λ′t/2 0

0 0 sin2 λ′t


 . (21)

In order to describe the degree of impurity of mixed states,
ρA, we compute the von Neumann entropy [37] of the sub-
system. The entropy is given by

S(ρA) = − [cos2(λ′t)
]
log2

[
cos2(λ′t)

]

− [sin2(λ′t)
]
log2

[
sin2(λ′t)

]
. (22)

The entropy varies from 0 to its maximum value (log2 2),
and the state of the system of two spin-1 particles evolves
from a pure state to a maximally mixed one. The entangle-
ment of two spin-1 particles is time dependent, as shown
in Figure 1. It exhibits a cyclic behavior and the cyclic
behavior is the same as the behavior of the wave function.

The entanglement of two-particle system may be
understood by the Schmidt decomposition, where the
Schmidt number of |ψ2(λ′, t)〉 is two when λ′t �=

0, π/2, π, ... This means that the system is entangled state.
when λ′t = 0, π/2, π, ..., the Schmidt number is changed
to one. In this case, the system is unentangled state [38].

Another way to describe the entanglement is
to calculate the concurrence by taking the basis
{|11〉, |13〉, |31〉, |33〉}. We find that the concurrence is
| sin 2λ′t|. When λ′t = π/4, 3π/4, ..., | sin 2λ′t| = 1 cor-
responds to a maximally entangled state. When λ′t =
0, π/2, π, ..., | sin 2λ′t| = 0 corresponds to a unentan-
gled state. Therefore, the description of the entropy, the
Schmidt decomposition and the concurrence to the entan-
glement of the two-particle system is consistent.

It is known that the state |ψ〉 in a complex Hilbert
space H is physically indistinguishable from the state
|ψ′〉 = eiχ|ψ〉. In other words, the initial and final states
should be found along the same ray in H, but may be re-
lated to each other by a phase [39]. Under this condition,
the quantity,

arg 〈ψ′(t1)|ψ′(t2)〉 + i

∫ t2

t1

〈ψ′(t)|d|ψ′(t)〉 =

arg 〈ψ(t1)|ψ(t2)〉 + i

∫ t2

t1

〈ψ(t)|d|ψ(t)〉 , (23)

is invariant. Moreover, this functional is reparameteriza-
tion invariant [40]. When a quantum system undergoes a
cyclic evolution, the first term on the left and on the right
in equation (23) only contributes a factor 2π.

By considering the projective space, P , in which vec-
tors are grouped under equivalence classes |ψ〉 ∼ reiχ|ψ〉
for any r > 0 and real χ, the associated projection map is

Π : H → P
|ψ〉 → Π(|ψ〉) =

{|ψ′〉 : |ψ′〉 = reiχ|ψ〉} , (24)

and the ket representing the system state traces out a
path, C: [0, τ ] → H, where Π(C) is closed curve in P .
For each point |ψ〉 on C, we can choose a smoothly vary-
ing representative |ψ〉 from Π(|ψ(t)〉 in such a way that
|ψ(0)〉 = |ψ(τ)〉. |ψ〉 represents the evolved state of the sys-
tem and satisfies the condition (19) for parallel transport.

From equations (17) and (18), we know that φ is a
parameter controlling the renormalized Hamiltonian. If φ
traces a closed loop in the parameter space, the geometric
(Berry) phase of the system can then be written in terms
of φ as

γg(C) = −π
2

[1 − cos(2λ′t)]. (25)

Like the case of the entanglement, the geometric phase of
two spin-1 particles is also time dependent. It is a cyclic
(see Fig. 2) with a period which is half the time needed
for the evolution of the two spin-1 particle system. This is
that the geometric phase depends only on the area covered
by the evolution of the system. For λ′t = nπ, the phase
vanishes and for λ′t = (n± 1

2 )π, the geometric phase is −π.
From equations (22) and (25) and Figures 1–2, we see

that the entanglement measured using the entropy of one
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Fig. 2. Geometric phase γg of two-level system as a function
of λ′t is shown. It is time-dependent and exhibits a cyclic phase.
It is shown that the geometric phase changes periodically as the
state of two particles alternates between pure state to mixed
state.

Fig. 3. Entropy of the subsystem of the spin-1 two-particle
system as a function of the geometric phase is shown. When
the geometric phase change from −π to −π/2 to 0, the entropy
as a measure of entanglement goes from 0 to a maximum to 0.

of the subsystems of the two spin-1 particle system is re-
lated to its geometric phase. Inserting equation (25) into
equation (22), we find

S =
γg

π
log2

−γg

π
−
(
1 +

γg

π

)
log2

(
1 +

γg

π

)
. (26)

The relation between the entropy and geometric phase is
shown in Figure 3. It is obvious there is a symmetry be-
tween two sides of the point γg = −π/2. At the point of
γg = −π/2, the entropy is equal to one. This means that
the system is a maximally entangled state. At the mini-
mum and maximum points of γg = −π, 0, the entropy is
zero. This means that the system is a unentangled state.
Therefore, the cyclic geometric phase includes all informa-
tion of the two-particle entanglement. Equation (26) may
be interesting in application of quantum information.

4 Three and four spin-1 particles systems

In recent years, three-qubit entangled states have been
investigated by a number of authors [41–44]. They have
also been shown to have certain advantages over the
two-particle Bell states in their applications to dense cod-
ing, teleportation and quantum cloning. Moreover, it is

also common in atomic and molecular physics to con-
sider the cases of N (N > 2) spin-1 particles and their
resonances.

In this section, we extend the previous section to a
system of three and four spin-1 particles under the same
type of spin-spin interaction. Using equation (15) by set-
ting N = 3, one has

C(1, 3, t) =
1
3

{
2 exp

(
i
1
2
λ1t

)
cos

(√
3

2
λ2t

)

+ exp (−iλ1t)

}
, (27)

where λ1 = λ cos φ
3 and λ2 = λ sin φ

3 are rescaled coupling
constants, and

C(2, 3, t) = −1
3
ei φ

3

{
exp

(
i
1
2
λ1t

)[
cos

(√
3

2
λ2t

)

+
√

3 sin

(√
3

2
λ2t

)]
− exp (−iλ1t)

}
, (28)

C(3, 3, t) =
1
3
ei 2φ

3

{
exp

(
i
1
2
λ1t

)[
− cos

(√
3

2
λ2t

)

+
√

3 sin

(√
3

2
λ2t

)]
+ exp (−iλ1t)

}
. (29)

Moreover, the analytic expressions for the associated prob-
abilities are

P (1, 3, t) = |C(1, 3, t)|2 =
1
9

[
1 + 4 cos2

(√
3

2
λ2t

)

+ 4 cos
(

3
2
λ1t

)
cos

(√
3

2
λ2t

)]
, (30)

P (2, 3, t) = |C(2, 3, t)|2

=
1
9

(
1 +

[
cos

(√
3

2
λ2t

)
+
√

3 sin

(√
3

2
λ2t

)]2

− 2 cos
(

3
2
λ1t

)[
cos

(√
3

2
λ2t

)
+
√

3 sin

(√
3

2
λ2t

)])
,

(31)

P (3, 3, t) = |C(3, 3, t)|2

=
1
9

(
1 +

[
− cos

(√
3

2
λ2t

)
+
√

3 sin

(√
3

2
λ2t

)]2

+2 cos
(

3
2
λ1t

)[
− cos

(√
3

2
λ2t

)
+
√

3 sin

(√
3

2
λ2t

)])
.

(32)
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Note that it is easy to verify that P (1, 3, t) + P (2, 3, t) +
P (3, 3, t) = 1.

From equations (27)–(29), we see that we need two pa-
rameters to describe the motion of the three spin-1 parti-
cles. By a suitable rescaling in the interaction between the
three spin-1 particles, these parameters are denoted by λ1t
and λ2t. From equations (30)–(32), we see that they can
undergo very complicating cyclic motion.

We see if cos(3
2λ1t) = ± 1

2 and cos(
√

3
2 λ2t) = ± 1

2 , the
probabilities are the same. This implies, at some points of
λ1t = 2π

9 + 4nπ
3 and λ2t = 2π

3
√

3
+ 4nπ√

3
or λ1t = 4π

9 + 4nπ
3

and λ2t = 4π
3
√

3
+ 4nπ√

3
, the corresponding state vectors are

the W states, such as

|ψW 〉 =
1√
3

(
ei π

6 |133〉 − iei φ
3 |313〉+ ei( 2

3 φ+ π
6 )|331〉

)
,

(33)
or

|ψW 〉 =
1√
3

(
ei 2π

3 |133〉 − ei φ−π
3 |313〉 + iei 2

3φ|331〉
)
.

(34)
Three-particle entangled W state, which is inequivalent
to the GHZ state under stochastic local operations and
classical communication, is robust in that it remains en-
tangled even after any one of the three particles is traced
out [40–43].

Inserting equations (27)–(29) into (14), we get

|ψ3(λ1, λ2, t)〉 = −C(1, 3, t)|133〉
− C(2, 3, t)|313〉 − C(3, 3, t)|331〉, (35)

a similar equation for |φ3〉 can be obtained.
There is no generically acceptable measure for de-

gree of entanglement for a tripartite system consist-
ing of three spin-1 particles. One method involves look-
ing at the bipartite entanglement for neighboring sites.
Thus, we could compute the concurrence or simply the
Von Neumann entropy of the subsystem, such as

ρAB = TrC(ρABC). (36)

It is also interesting to compare the entropy of the bipar-
tite system with the entropy at each site by calculating
the entropy of the density matrix of the system,

ρA = TrBC(ρABC)

=

( |C(1, 3, t)|2/2 −i|C(1, 3, t|2/2 0
i|C(1, 3, t)|2/2 |C(1, 3, t)|2/2 0

0 0 1 − |C(1, 3, t)|2

)
.

(37)

The entropy function may be expressed by

S(ρA) = − Tr (ρ log2 ρ)

= − |C(1, 3, t)|2 log2 |C(1, 3, t)|2
− (|C(2, 3, t)|2 + |C(3, 3, t)|2)

× log2

(|C(2, 3, t)|2 + |C(3, 3, t)|2) . (38)

Fig. 4. The entropy for the subsystem of two neighboring sites,
AB, as a function of λ1t and λ2t. Note the cyclic variation in
the entropy as the parameters of the system changes. In general
it is not possible to attain the maximum value of unity. Notice
that ρAB is exactly the same as ρC .

Fig. 5. The entropy of the subsystem of two neighboring sites,
BC, as a function of λ1t and λ2t. It is shown that the entropy
varies cyclically from 0 to 1 as the state of three particles
evolves from a pure state to a maximally mixed one. Notice
that the plot is exactly the same as the one for the entropy of
the bipartite system of a single site A.

The Von Neumann entropies of the bipartite system,
AB and BC, are plotted as a function of λ1t and λ2t in
Figures 4 and 5 respectively. The entropies of the sub-
systems of three spin-1 particles (see Figs. 4 and 5) are
naturally more complicating than the case of two spin-1
particles (see Fig. 1). In particular, they are now parame-
terized by two time-dependent parameters, λ1t and the λ2t
(see Figs. 4 and 5), in contrast to the case of the two spin-1
particles system (see Fig. 1) which can be parameterized
by a single time-dependent variable. However the general
cyclical nature of the variation is still present. Moreover,
the entropies for the subsystem, ρAB and ρBC , are ex-
actly the same as the entropies for ρC and ρA, respectively.
This may be understood by symmetry of the wave func-
tion (35) of the three-particle system in which three basis
are |133〉, |313〉, and |331〉 respectively. Therefore S(ρA)
can be taken as a measurement of entanglement for the
three particle system in our model.

The concurrence for the system may be calculated
under the same basis, such as {|11〉, |13〉, |31〉, |33〉}.
They are 2

√
P (1, 3, t)P (2, 3, t), 2

√
P (2, 3, t)P (3, 3, t) and

2
√
P (3, 3, t)P (1, 3, t), which are associated to the proba-

bilities of the system.
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Fig. 6. Three-dimensional plot of geometric phase of
three spin-1 particles. As the state of three particles evolves
from a pure state to a mixed state, the geometric phase is
cyclically changed. The cyclic geometric phase returns a mem-
ory of its motion.

In the Schmidt decomposition of the three-particle sys-
tem, the Schmidt number is three in general case. This
means that the system is a entangled state [38]. How-
ever, when P (1, 3, t) = P (2, 3, t) = 0 and P (3, 3, t) = 1,
P (2, 3, t) = P (3, 3, t) = 0 and P (1, 3, t) = 1 or P (3, 3, t) =
P (1, 3, t) = 0 and P (2, 3, t) = 1, the Schmidt number
of the system is changed to one. Thus, the system is a
unentangled state. It is obvious that the conclusions are
consistent with description of the entropy S(ρA) and the
concurrence to the entanglement.

From equation (35), we see that the wave functions
is cyclic under a suitable choice of parameters, such as
1
2λ1t = 2nπ,

√
3

2 λ2t = 2mπ; (n,m = 1, 2, ...), which is
satisfied for

√
3 tan φ

3 = m
n . Thus, when the system of

three spin-1 particles undergoes such a cyclic evolution,
the system will also trace a closed path in the projective
space. Moreover, a direct calculation shows that they ful-
fill the condition of parallel transport. Thus, the geometric
phase of the cyclic motion is given by

γg =i
∮

C

dφ

〈
ψ3 (λ1, λ2, t)

∣∣∣∣
d

dφ

∣∣∣∣ψ3 (λ1, λ2, t)
〉

= − 2π
27

[
6 + 6 sin2

(√
3

2
λ2t

)
−
√

3 sin
(√

3λ2t
)

− 6 cos
(

3
2
λ1t

)
cos

(√
3

2
λ2t

)

+2
√

3 cos
(

3
2
λ1t

)
sin

(√
3

2
λ2t

)]
. (39)

The cyclic geometric phase of three spin-1 particle system
is plotted in Figure 6. Compared to the two spin-1 parti-
cle system (see Fig. 2), this is a more intricate plot with
two parameters. From equations (30)–(32) and Figure 6,
the geometric phase depends on the probability functions.
This means that the geometric phase is changed from −π
to zero according to the probabilities of the system. In
the form of the geometric phase factor, therefore, we know
that the wave function of the three-particle system may

retain a memory of its motion. This phase factor can be
measured by interfering the wave function with another
coherent wave function enabling one to discern whether
or not the system has undergone an evolution.

We next extend our study to four spin-1 particles. It is
noteworthy that recent experimental violation of a spin-1
Bell inequality has been reported using polarization entan-
gled four spin-1 particle state produced by pulsed param-
eter down conversion. In this case, the coefficients from
equation (15) may be written as

C(1, 4, t) =
1
2

[cos (λ4t) + cos (λ3t)] , (40)

C(2, 4, t) = −1
2
ei φ

4 [sin(λ4t) + i sin(λ3t)], (41)

C(3, 4, t) = −1
2
ei φ

2 [cos(λ4t) − cos(λ3t)], (42)

C(4, 4, t) =
1
2
ei 3φ

4 [sin(λ4t) − i sin(λ3t)], (43)

where λ3 = λ cos φ
4 and λ4 = λ sin φ

4 are renormalized
coupling constants. And the corresponding probabilities,

P (1, 4, t) = |C(1, 4, t)|2

=
1
4

[cos (λ4t) + cos (λ3t)]
2
, (44)

P (2, 4, t) = P (4, 4, t)

=
1
4
[
sin2 (λ4t) + sin2 (λ3t)

]
, (45)

P (3, 4, t) = |C(3, 4, t)|2

=
1
4

[cos (λ4t) − cos (λ3t)]
2
. (46)

The probabilities in equations (44)–(46) are the cyclic
functions of two-parameters, namely λ3t and λ4t.

When cos(λ3t) = ±1 and cos(λ4t) = 0 (or cos(λ3t) = 0
and cos(λ4t) = ±1) are satisfied, the probabilities are
same. Explicitly at some points of λ3t = nπ and λ4t =
(n + 1

2 )π (or λ3t = (n + 1
2 )π and λ4t = nπ), the corre-

sponding state vectors are

|ψW 〉 =
1√
4

(
|1333〉 − ei φ

4 |3133〉

+ei φ
2 |3313〉+ ei 3φ

4 |3331〉
)
, (47)

or,

|ψW 〉 =
1√
4

(
|1333〉 − iei φ

4 |3133〉

−ei φ
2 |3313〉 − iei 3φ

4 |3331〉
)
, (48)

which are the W states. The GHZ and W states exhibit
very different properties when subjected to physical pro-
cesses like state loss, or white noise [40–43].
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Fig. 7. Plots of entropy for the reduced density matrix of a single site for a four-spin-1 particle system.

The wave functions of the four spin-1 particle states
are

|ψ4 (λ3, λ4, t)〉 = − C(1, 4, t)|1333〉 − C(2, 4, t)|3133〉
− C(3, 4, t)|3313〉 − C(4, 4, t)|3331〉,

(49)

and |φ4(λ3, λ4, t) > is similar to equation (49).
The entanglement of four spin-1 particles is in general

a more complex problem. To characterize the entangle-
ment of the state of four spin-1 particles, we can compute
the entropy for the reduced density matrices of single site,
blocks of two spin-1 sites and blocks of three spin-1 sites.
In our case, the entropy of four spin-1 particle system is in
general a complex function of the parameters λ3t and λ4t.
Figure 7 depicts the entropy for the reduced density matri-
ces of single site. In Figure 8, we compute the entropy for
the reduced density matrix of a block of two neighboring
spin sites. Like the entropy for the reduced density matrix
for single site, the variation of the plots of the entropy
for neighboring sites with the parameters λ3t and λ4t at-
tains minimum at the same parameter values. Moreover,
we see that the entropies are not all independent. Indeed
S(ρBC) = S(ρB) and S(ρCD) = S(ρD). We also note
that S(ρAB) is not related in any way with the entropy
of the reduced density matrix for single sites. However, if

we consider blocks of three neighboring sites, we see that
S(ρABC) = S(ρAB). Also, S(ρBCD) = S(ρA). The plots
for the variations in the entropy for the reduced density
matrices for three neighboring sites are shown in Figure 9.
Thus, although the entropies for the reduced density ma-
trices are not all independent, together they can give a
rough good picture concerning the entanglement of the
whole chain. In particular, we see from the relationships
that the third site C does not seem to contribute sig-
nificantly to the entanglement of the whole chain since
S(ρCD) = S(ρD) and S(ρABC) = S(ρAB).

The concurrence for the four-particle system may be
written as 2

√
P (i, 4, t)P (j, 4, t)(i < j = 1, 2, 3, 4). These

concurrence are not independent because of P (2, 4, t) =
P (4, 4, t). Moreover, the Schmidt decomposition of the
four-particle system is more complicated because of the
degenerate eigenvalues of the density matrices. This may
be one of the reasons why the system of four-particle sys-
tem will never reach a GHZ state.

As in the case of the three spin-1 particle states, the
wave functions are also cyclic provided the following con-
ditions are fulfilled by λ3t = 2nπ and λ4t = 2mπ; (n,m =
1, 2, ...), which give tan φ

4 = m
n . A closed path is traced

out by the parameter φ in the projective space under the
cyclic evolution of the system. By using equation (49),
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Fig. 8. The variation in the entropy of the reduced density ma-
trix of a block of two neighboring sites in a four-spin-1 particle
system.

we know that the system satisfies the condition of paral-
lel transport. The Berry phase of the four spin-1 particle
system is easily derived,

γg = i

∮

C

〈ψ (λ3, λ4, t) |d|ψ (λ3, λ4, t)〉

= −π
4

{
4 − [cos (λ4t) + cos (λ3t)]

2
}
. (50)

The geometric phase for the system of four spin-1 par-
ticles as the function of λ3t and λ4t is exhibited in Fig-
ure 10. It is interesting to note that the entropy S(ρA)
and the geometric phase in the two and four spin-1 parti-
cle system have a relatively simpler form compared with
the three spin-1 particle system.

We note that equation (26) between the entropy S(ρA)
and geometric phase is satisfied for the four particle sys-
tem. Therefore, it appears that the spin-1 particles tend
to form pairs under the spin-spin interaction. Moreover,
the geometric phase is cyclically changed as the proba-

Fig. 9. The variation in the entropy of the reduced density
matrix of a block of three neighboring sites in a four-spin-1
particle system.

Fig. 10. Geometric phase for four spin-1 particle system. The
geometric phase is changed as the state evolves from a pure
state to a mixed state. The cyclic nature of geometric phase
returns a memory of its motion.

bility P (1, 4, t) cyclically moves. The changed range of
the geometric phase is from −π to zero. At the minimum
and maximum points γg = −π, 0, the corresponding en-
tropy S(ρA) is zero. When γg = −π/2, S(ρA) is one. The
cyclic nature of the geometric phase shows that the system
may retain a memory of its motion.

5 N-particle system

Following our analysis in Sections 3 and 4, we can gener-
alize our results to the N -particle system with N − 1 par-
ticles in the longitudinal states and one particle in the
transverse state. By using equations (14) and (15),



294 The European Physical Journal D

one finds

|ψN (t)〉 =
1
N

N∑
n=1

N∑
k=1

exp
(
i
(2πk + φ)(n− 1)

N

−iλt cos
(2πk + φ)

N

)
S+

n |3〉⊗N

=
N∑

n=1

ei N−1
N φC0 (n,N, λc

N , λ
s
N , t)S

+
n |3〉⊗N , (51)

where the renormalized couplings, λc
N and λs

N , are

λc
N = λ cos

φ

N
, λs

N = λ sin
φ

N
, (52)

and

C0 (n,N, λc
N , λ

s
N , t) =

1
N

×
N∑

k=1

exp
(
i
(2πk)(n− 1)

N
−iλc

N t cos
2πk
N

+iλs
N t sin

2πk
N

)
.

(53)

The probabilities of N -particle system may be written by

P (n,N, t) = |C(n,N, t)|2 = |C0(n,N, t)|2, (54)

where C(n,N, t) is given by equation (15) and P (1, N, t)+
P (2, N, t) + ...+ P (N,N, t) = 1.

From Sections 3 and 4, we know that the entropy of
the subsystem of a single site is important for two, three
and four-particle system because of symmetry of our wave
functions. Therefore, for simplification, we only consider
the entropy of the subsystem of a single site for N -particle
system. Extending equations (22) and (38), the entropy of
the N -particle system is given by

S(ρA) = −P (1, N, t) log2 P (1, N, t) − [1 − P (1, N, t)]
× log2[1 − P (1, N, t)]. (55)

Because the wave function of N -particle system is a unit
vector, the condition of parallel transport for the system
can be similarly deduced [39]. Thus, the geometric phase
of the N -particle system can be expressed by

γg(N) = i

∮

C

〈ψN (λc
N , λ

s
N , t) |d|ψN (λc

N , λ
s
N , t)〉

= − 2π
N3

N∑
n=1

(n− 1)P (n,N, λc
N , λ

s
N , t) . (56)

If we set n = 2, 3, 4, equation (56) will repeat the results
of equations (25), (39) and (50), respectively. It is inter-
esting to noted that the geometric phase is related to the
probabilities of the N -particle system.

6 Noise and decoherence

The decay of quantum information due to the interaction
of a system with its environment, which can be described

by a superoperator. If the environment frequently scatters
off the system, and the state of the environment is not
monitored, then off-diagonal terms in the density matrix
of the system decay rapidly in a preferred basis. The time
scale for decoherence is set by the scattering rate, which
may be much larger than the damping rate for the system.
The great challenge facing any such information process-
ing in the quantum regime lies in avoiding, controlling or
overcoming the effects of decoherence.

When the relevant dynamical time scale of an open
quantum system is long compared to the time for the envi-
ronment to the forget quantum information, the evolution
of the system is effectively local in time (the Markovian
approximation). Much as general unitary evolution is gen-
erated by a Lindbladian L as described by the master
equation [45],

∂ρ

∂t
= −i

[
Ĥ, ρ

]
+
∑

µ

(
LµρL

+
µ − 1

2
{
LµL

+
µ , ρ

})
, (57)

where the Lindblad operator, Lµ =
√
κµ(t)Sµ, represent

the coupling to the environment and Sµ is spin operators
from equation (1). The decoherence time is approximately
given by 1/κµ(t). The noise can be controlled by switching
on and off κµ(t). Now suppose the isotropic noise (Lx, Ly,
and Lz) is applied to our system.

It is easy to find the matrix form of equation (57) in
interaction picture as

∂

∂t



ρ11 ρ12 ρ13

ρ21 ρ22 ρ23

ρ31 ρ32 ρ33


 =

κ



ρ22 + ρ33 − 2ρ11 −ρ21 − 2ρ12 −ρ31 − 2ρ13

−ρ12 − 2ρ21 ρ11 + ρ33 − 2ρ22 −ρ32 − 2ρ23

−ρ13 − 2ρ31 −ρ23 − 2ρ32 ρ11 + ρ22 − 2ρ33


 .

(58)

The analytic solution of equation (58) can be found.
For diagonal elements,

ρ11(t) =
1
4

(2ρ11(t0) + ρ22(t0) + ρ33(t0))

+
1
4

(2ρ11(t0) − ρ22(t0) − ρ33(t0)) e−3κ(t−t0),

(59)

ρ22(t) =
1
4

(2ρ22(t0) + ρ11(t0) + ρ333(t0))

+
1
4

(2ρ22(t0) − ρ11(t0) − ρ33(t0)) e−3κ(t−t0),

(60)

ρ33(t) =
1
4

(2ρ33(t0) + ρ22(t0) + ρ11(t0))

+
1
4

(2ρ33(t0) − ρ22(t0) − ρ11(t0)) e−3κ(t−t0),

(61)

for off-diagonal elements,

ρij(t) = ρij(t0)e−κ(t−t0), i �= j = 1, 2, 3. (62)
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We see that the off-diagonal elements of the density matrix
tend to decay in time as a simple exponential, with the
decay constant denoting a relaxation time.

The properties of quantum information through noisy
quantum channels are quantified by the fidelity which
measures the overlap between the initial and time-
developed state vectors. Now we take the density matrix
in equation (21) as an initial state, The fidelity of the
two-particle system is written as

F (t0, t) =Tr (ρin(t0)ρout(t))

=
1
4

cos2 λ′t0

(
1 +

1
2

cos2 λ′t0

−
(

1 − 3
2

cos2 λ′t0

)
e−3κ(t−t0)

)

+
1
4

sin2 λ′t0
(
1 + sin2 λ′t0

+2
(

1 − 3
2

cos2 λ′t0

)
e−3κ(t−t0)

)

+
1
2

cos4 λ′t0e−κ(t−t0). (63)

It is useful to calculate the average fidelity given by

Fad(t0, t) =
1
4π

∫ 2π

0

dφ

∫ π

0

F (t0, t) sinλ′t0d(λ′t0)

=
49
120

+
28
120

e−3κ(t−t0) +
1
10
e−κ(t−t0). (64)

Similarly, the fidelities for the three-particle and four-
particle systems can be obtained. Further, the fidelity for
the N -particle system can be expressed as

F (N, t0, t) =
1
4
P (1, N, t0)

(
1 +

1
2
P (1, N, t0)

−
(

1 − 3
2
P (1, N, t0)e−3κ(t−t0)

)

+
1
2
(1 − P (1, N, t0))

(
1 − 1

2
P (1, N, t0)

+
(

1 − 3
2
P (1, N, t0)

)
e−3κ(t−t0)

)

+
1
2
P 2(1, N, t0)e−κ(t−t0), (65)

which is related to the particle probabilities. For N > 2
system, the average fidelity can be calculated by

Fad =

1
2π2

∫ 2π

0

dφ

∫ π

0

dθ1 sin θ1
∫ π

0

F (N, t0, t) sin2 θ2dθ2. (66)

For N = 3, θ1 = λ1t and θ2 = λ2t, the average fidelity is

Fad = 0.432 + 0.295e−3κ(t−t0) + 0.028e−κ(t−t0), (67)

and for N = 4, θ3 = λ3t and θ4 = λ4t, the average fi-
delity is

Fad = 0.446 + 0.339e−3κ(t−t0) + 0.026e−κ(t−t0). (68)

It is noted that our fidelity is slightly different from one
of spin- 1

2 , where two decay widths,
√
κ and

√
3κ, are

included.

7 Conclusion

An entangled composite system gives rise to nonlocal cor-
relation between its subsystems that does not exist clas-
sically. This nonlocal property enables the local quantum
operations and classical communication to transmit infor-
mation with advantages no classical communication pro-
tocol can offer. The understanding of entanglement is thus
at the very heart of quantum information theory. Many-
particle system with strong quantum fluctuations is a chal-
lenging subject in quantum information. For the interact-
ing system, the existence of entanglement is normal, the
question is how to characterize the detail.

In present work, we have studied the spin-1 particle
system under the spin-spin interaction between the trans-
verse and the longitudinal polarization. It is known that
the polarized vector boson production can be obtained
by the collisions of the polarized hadron beams. Thus,
by using a polarizing beam splitter similarly to refer-
ences [46–48], we can separate the system of the trans-
verse and the longitudinal polarization. In our studies,
the eigenstates of the systems are obtained by general-
ized and extended Jordan-Wigner transformation, where
expressions for the cyclic entanglement and cyclic geomet-
ric phase have been derived.

For the two-particle system, the wave function is de-
scribed by a corresponding polar angle (θ = λ′t) and
azimuthal angle (φ). It is noted that the polar angle is
variable of time. Thus the entanglement and geometric
phase of the system is cyclically changed. Moreover, an
exact equation is found between the entropy and geomet-
ric phase for two particles system.

System with N spin-1 particles (N > 2), in contrast
to a system of two spin-1 particles, evolves in time with
two-parameters. Moreover, the entanglement and geomet-
ric phase related to the particle probabilities of a system
of odd number of spin-1 particles is more complicating
than a system with even number of spin-1 particles. In
our model, the entropy of the subsystem of a single site
can be taken as a measurement of entanglement for two
and three-particle system.

In addition, the entropy of a single site, S(ρA), and ge-
ometric phase for four particle system satisfy same equa-
tion (25) as the two particle system. We conjecture that
the massive spin-1 particles under the spin-spin interac-
tion are able to form pairs.

The entanglement and geometric phases of the
N -particle are cyclically changed as the states evolve from
a pure state to a mixed state. When the particle proba-
bilities are equal each other, the system is in W -states.
The W states have different from the GHZ states about
properties of entanglement and geometric phase.
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15. E. Sjöqvist, Phys. Rev. A 62, 022109 (2000); E. Sjöqvist,
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